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What is machine learning?g

 The goal of machine learning is to build computer systems that 
can adapt and learn from their experience (Tom Dietterich).

 A computer program is said to learn from experience E with p p g p
respect to some class of tasks T and performance measure P, if 
its performance at tasks in T, as measure by P, improves with 

i  (T  Mi h ll b k   2)experience (Tom Mitchell book, p. 2).

 ML problems can be formulated as 

 Given: (x1, y1), (x2, y2), …, (xn, yn)
- xi is description of an object, phenomenon, etc.

- yi is some property of xi, if not available learning is unsupervised

 Find: a function f(x) that f(xi) = yi

Finding hypothesis f  in a huge hypothesis space F by narrowing the search with constraints (bias)

Overview of ML challengesg

1 Generative vs  discriminative learning1. Generative vs. discriminative learning
2. Learning from non-vectorial data
3 B d l ifi ti  d i3. Beyond classification and regression
4. Distributed data mining
5. Machine learning bottlenecks
6. Intelligible models6. Intelligible models
7. Combining learning methods
8 Unsupervised learning comes of age8. Unsupervised learning comes of age
9. More informed information access

1. Generative vs. discriminative methods

Training classifiers involves estimating f: X  Y, or P(Y|X).
E l  P( l  | d d)  P(  | “ á”)  

Discriminative classifiersGenerative classifiers

Examples: P(apple | red  round), P(noun | “cá”)  

Discriminative classifiers

 Assume some functional form 
for P(Y|X)

Generative classifiers

 Assume some functional 
form for P(X|Y)  P(Y) for P(Y|X)

 Estimate parameters of P(Y|X)
directly from training data

form for P(X|Y), P(Y)

 Estimate parameters of 
P(X|Y), P(Y) directly from y g

 SVM, logistic regression, 
traditional neural networks, 

( | ), ( ) y
training data, and use Bayes 
rule to calculate P(Y|X = xi) ,

nearest neighbors, boosting, 
MEMM, conditional random 
fields  etc

 HMM, Markov random 
fields, Bayesian networks, 
Gaussians  Naïve Bayes  etc fields, etc.Gaussians, Naïve Bayes, etc.

(cá: fish, to bet)
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Generative vs. discriminative methods

Generative approach Discriminative approachGenerative approach

 Try to build models for the 
d l i  tt

Discriminative approach

 Try to learn to minimize an utility 
f ti (  l ifi ti  ) underlying patterns

 Can be learned, adapted, 
and generalized with small 

function (e.g. classification error) 
but not to model, represent, or 
“understand” the pattern explicitly and generalized with small 

data.

p p y
(detect 99.99% faces in real images 
and do not “know” that a face has 
two eyes)two eyes).

 Often need large training data, say 
100,000 labeled examples, and 00,000 abe ed e a p es, a d 
can hardly be generalized.

Generative vs. discriminative learningg

 Objective: determine which is better for what, and why

 Current:
 Discriminative learning (ANN, DT, KNN, SVM) typically more 

accurate
 Better with larger data

 Faster to train

 Generative learning (graphical models, HMM) typically more flexible
 More complex problems

M  fl ibl  di ti More flexible predictions

 Key Challenges:
 Vapnik: “When solving a problem  don’t first solve a harder problem” Vapnik: When solving a problem, don t first solve a harder problem

 Making generative methods computationally more feasible

 When to prefer discriminative vs. generative

2. Kernel methods

 Objective: learning from non vectorial input data Objective: learning from non-vectorial input data

 Current:
M t l i  l ith  k  fl t  fi d l th f t   Most learning algorithms work on flat, fixed length feature 
vectors

 Each new data type requires a new learning algorithm Each new data type requires a new learning algorithm

 Difficult to handle strings, gene/protein sequences, natural 
language parse trees, graph structures, pictures, plots, …

 Key Challenges:
 One data-interface for multiple learning methodsp g

 One learning method for multiple data types

 Research already in progressy p g



Kernel methods: the basic ideas
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Kernel methods: math background
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Linear algebra, probability/statistics, functional analysis, optimization

 Mercer theorem: Any positive definite function can be written as an  Mercer theorem: Any positive definite function can be written as an 
inner product in some feature space.

 Kernel trick: Using kernel matrix instead of inner product in the 
feature space.
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3. Beyond classification and regressiony g

 Objective: learning to predict complex objects

 Current:
 Most machine learning focuses on classification and regression

 Discriminative methods often outperform generative methods

 Generative methods used for learning complex objects (e.g. language 
parsing  protein sequence alignment  information extraction)parsing, protein sequence alignment, information extraction)

 Key Challenges:
 Extend discriminative methods (ANN, DT, KNN, SVM, …) to more , , , ,

general settings

 Examples: ranking functions (e.g. Google top-ten, ROC), natural 
language parsing  finite-state modelslanguage parsing, finite-state models

 Find ways to directly optimize desired performance criteria (e.g. 
ranking performance vs. error rate)

What is structured prediction? (Daume)p

 Structured prediction is a fundamental machine learning task  Structured prediction is a fundamental machine learning task 
involving classification or regression in which the output 
variables are mutually dependent or constrained. y p

 Such dependencies and constraints reflect sequential, spatial or 
combinatorial structure in the problem domain  and capturing combinatorial structure in the problem domain, and capturing 
these interactions is often as important for the purposes of 
prediction as capturing input-output dependencies. 

 Structured prediction (SP)  the machine learning task of 
generating outputs with complex internal structure .g g p p



What is structured prediction? (Lafferty)p y
 Text, sound, event logs, biological, handwriting, gene networks, 

linked data structures like the Web can be viewed as graphs linked data structures like the Web can be viewed as graphs 
connecting basic data elements-. 

I t t t k  i l i  t t d d t  i  th   Important tasks involving structured data require the 
computation of a labeling for the nodes or the edges of the 
underlying graph  E g  POS tagging of natural language text underlying graph. E.g., POS tagging of natural language text 
can be seen as the labeling of nodes representing the successive 
words with linguistic labels. 

 A good labeling will depend not just on individual nodes but 
also the contents and labels of nearby nodes, that is, the y , ,
preceding and following words--thus, the labels are not 
independent. 

Handwriting recognitiong g

x y

bbrace
Sequential structureSequential structure

Structured predictionp

Structured Learning / Structured PredictionStructured Learning / Structured Prediction

structured

yt-1 yt yt+1

xt-1 xt xt+1

(a) Unstructured Model (b) Linear-Structured Model

Labeling sequence data problem
 X is a random variable over data sequences
 Y is a random variable over label sequences whose labels are assumed 

g q p

 Y is a random variable over label sequences whose labels are assumed 
to range over a finite label alphabet A

 Problem: Learn how to give labels from a closed set Y to a data 
sequence X

X
x1 x2 x3

Thinking is beingX:

noun verb nounY:
y1 y2 y3

 POS tagging, phrase types, etc. (NLP), 
 Named entity recognition (IE)
 Modeling protein sequences (CB)
 Image segmentation, object recognition (PR)
 etc etc.



4. Distributed learningg

 Objective: DM/ML with distributed data

 Current:
 Most ML algorithms assume random access to all datag

 Often data comes from decentralized sources (e. g. sensor 
networks, multiple organizations, learning across firewalls, 
diff t it  t )different security systems)

 Many projects infeasible (e.g. organization not allowed to share 
data)data)

 Key Challenges:
 Develop methods for distributing data while preserving privacy Develop methods for distributing data while preserving privacy

 Develop methods for distributed learning without distributing the 
data

5. 5. Full auto: ML for the masses

 Objective: make ML easier to apply to real problems Objective: make ML easier to apply to real problems

 Current:
li i i d il d k l d b h l ML applications require detailed knowledge about the algs

 Preparing/Preprocessing takes at least 75% of the effort 

 Key Challenges:
 Automatic selection of machine learning method

 Tools for preprocessing the data
 Reformatting, Sampling, Filling in missing values, Outlier detection

 Robust performance estimation and model selection

 “Data Scoup”

6. Interpretable modelsp

 Objective: make learning results more understandable Objective: make learning results more understandable

 Current:
 Methods often achieve good prediction accuracy Methods often achieve good prediction accuracy
 The prediction rule appears complex & is difficult to verify
 Lack of trust in the rule Lack of trust in the rule
 Lack of insight

 Key Challenges: Key Challenges:
 Machine learning methods that are understandable & 

generate accurate rulesgenerate accurate rules
 Methods for generating explanations
 Model verification for user acceptancep

7. Ensemble methods

 Objective: combining learning methods automaticallyj g g y

 Current:
 We do not have a single DM/ML method that “does it all” We do not have a single DM/ML method that does it all

 Results indicate that combining models results in large 
improvements in performance

 Focus on boosting and bagging

 Key Challenges:
 Develop methods that combine the best of different learning algs

 Searching for good combinations might be more efficient than 
designing one “global” learning algorithm

 Theoretical explanation for why and when ensemble methods 
helphelp



8. Unsupervised learningp g

 Objective: improve state-of-the-art in unsupervised learning

 Current:
 Research focus in 90’s was supervised learning 

 Much progress on supervised learning methods like neural 
networks, support vector machines, boosting, etc.

U i d l i  d  t  “ t h ” Unsupervised learning needs to “catch up”
 Key Challenges:

M  b t d t bl  th d  f  l t i More robust and stable methods for clustering

 Include user feedback into unsupervised learning (e.g. clustering 
with constraints, semi-supervised learning, transduction)with constraints, semi supervised learning, transduction)

 Automatic distance metric learning

 Clustering as an interactive data analysis processg y p

9. Information access

 Objective: more informed information accessObjective: more informed information access

 Current:
 Bag-of-words

 Retrieval functions exploit document structure and link structure

 Information retrieval is a process without memory

 Key Challenges:
 Develop methods for exploiting usage data

 Learn from the query history of a user / user group Learn from the query history of a user / user group

 Preserving privacy while mining access patterns

 Exploiting common access patterns and finding “groups” of usersp g p g g p

 Web Expert: agent that learns the web (beyond Google)

 Topic modelling

What is data mining?

“Data driven discovery of models and patterns

g

Data-driven discovery of models and patterns   
from massive observational data sets” 

Languages, Statistics, Datag g ,
Representations

,
Inference

Data 
Management

Applications



Overview of DM challenges (ICDM’05) g

1. Developing a Unifying Theory of Data Mining 

2. Scaling Up for High Dimensional Data/High Speed Streams 

3. Mining Sequence Data and Time Series Data  

4. Mining Complex Knowledge from Complex Data 

5. Data Mining in a Network Setting 

6. Distributed Data Mining and Mining Multi-agent Data

7. Data Mining for Biological and Environmental Problems 

8. Data-Mining-Process Related Problems 

9. Security, Privacy and Data Integrity 

10. Dealing with Non-static, Unbalanced and Cost-sensitive Data

1. Developing a unifying theory of DMp g y g y

 The current state of the art of  Example: VC dimension. In statistical e cu e t state o  t e a t o  
data-mining research is too       
“ad-hoc”
 techniques are designed for 

i di id l bl

p
learning theory, or sometimes 
computational learning theory, the VC 
dimension (for Vapnik-Chervonenkis 

individual problems
 no unifying theory

 Needs unifying research
E l ti   l ti

dimension) is a measure of the capacity 
of a statistical classification algorithm, 
defined as the cardinality of the largest 

 Exploration vs explanation
 Long standing theoretical issues

 How to avoid spurious 
correlations?

set of points that the algorithm can 
shatter. 

correlations?
 Deep research

 Knowledge discovery on 
hidden causes?hidden causes?

 Similar to discovery of 
Newton’s Law?

VC dimension of perceptron is 3. 

2. Scaling up for high dimensional data g p g
and high speed streams

 Scaling up is needed
 ultra-high dimensional 

classification problems (millions p
or billions of features, e.g., bio 
data)

 Ultra-high speed data streamsg p

 Streams
 continuous, online process

 h   i  k  e.g. how to monitor network 
packets for intruders?

 concept drift and environment 
drift?

 RFID network and sensor 
network data

Excerpt from Jian Pei’s Tutorial
http://www.cs.sfu.ca/~jpei/

3. Sequential and time series dataq

 How to efficiently and 
accurately cluster, classify 
and predict the trends?

 Time series data used for  Time series data used for 
predictions are 
contaminated by noise
 How to do accurate short-

term and long-term 
predictions?p

 Signal processing techniques 
introduce lags in the filtered 
data, which reduces accuracy Real time series data obtained fromdata, w c  educes accu acy

 Key in source selection, 
domain knowledge in rules, 
and optimization methods 

Wireless sensors in Hong Kong UST
CS department hallway

and optimization methods 



4. Mining complex knowledge from complex 
data (complexly structured data)

 Mining graphs
 Data that are not i.i.d. (independent and identically distributed)

 bj    i d d  f h h  d   f  i l    many objects are not independent of each other, and are not of a single type. 
 mine the rich structure of relations among objects, 
 E.g.: interlinked Web pages, social networks, metabolic networks in the cell

 Integration of data mining and knowledge inference
 The biggest gap: unable to relate the results of mining to the real-world 

decisions they affect - all they can do is hand the results back to the user.decisions they affect all they can do is hand the results back to the user.

 More research on interestingness of knowledge

5. Data mining in a network settingg g

d l k Community and Social Networks
 Linked data between emails, 

Web pages, blogs, citations, 
sequences and people

 Static and dynamic structural 
behavior

 Mining in and for Computer 
Networks
 detect anomalies (e g  sudden 

Picture from Matthew Pirretti’s slides,penn state
 detect anomalies (e.g., sudden 

traffic spikes due to a DoS 
(Denial of Service) attacks 

 Need to handle 10Gig 

An Example of packet streams (data courtesy of 
NCSA, UIUC)

 Need to handle 10Gig 
Ethernet links (a) detect (b) 
trace back (c ) drop packet

6. Distributed data mining and mining 
lti t d tmulti-agent data

N d t  l t  th  d t   Need to correlate the data 
seen at the various probes 
(such as in a sensor network)

 Games
Player 1:miner

(such as in a sensor network)

 Adversary data mining: 
d lib l i l h Player 2

Action: H T

deliberately manipulate the 
data to sabotage them (e.g., 

k  th  d  f l  

Player 2

H H TT

make them produce false 
negatives)

(-1,1)(-1,1) (1,-1) (1,-1)
 Game theory may be needed 

for help

( , )( 1,1) (1, 1) (1, 1)

Outcome

7. Data mining for biological and g g
environmental problems

 New problems raise new 
questions

 Large scale problems especially so
 Biological data mining, such as  

HIV vaccine design

 DNA, chemical properties, 3D 
d l

3000 
metabolitesMetabolomics

structures, and functional 
properties  need to be fused 

 Environmental data mining
2,000,000 ProteinsProteomics

 Environmental data mining

 Mining for solving the energy 
crisis 25,000 Genes

Genomics

crisis



8. Data-mining-process related problemsg p p

How to automate mining 
process?

 the composition of data 
i i  ti

a step in the KDD 
process consisting of 

5 Putting the results
in practical use

mining operations

 Data cleaning, with 
logging capabilities

p g
methods that produce 
useful patterns or 
models from the data

3

4

Data mining

Interpret and evaluate
discovered knowledge

p

Maybe 70-logging capabilities

 Visualization and mining 
automation

3

Collect and preprocess data        

Data mining
Extract Patterns/Models

90% of effort 
and cost in 
KDD

2

Need a methodology: help 
users avoid many data mining 

i t k

KDD is inherently
interactive and 

iterative

1 Understand the domain
and define problems

mistakes

 What is a canonical set of 
data mining operations

(In many cases, viewed KDD as data mining) 

data mining operations

9. Security, privacy and data integrityy, p y g y

 How to ensure the  Perturbation Methods
users privacy while 
their data are being 

 Secure Multi-Party Computation 
(SMC) Methods

mined?

 How to do data 

50 | 40K | 
... 

30 | 70K | ... .
Randomizer Randomizer

Alice
’s 

age

Add  How to do data 
mining for 
protection of security 

.

.

Randomizer Randomizer

65 | 20K | ... 25 | 60K | 
... ...30 

becom

random 
number to 

Age

protection of security 
and privacy?

K l d  i t it  
...

Reconstruct
Distribution 

of Age

Reconstruct
Distribution
of Salary

becom
es 65 

(30+35
)

 Knowledge integrity 
assessment 

Classification
Algorithm Model

10. Dealing with non-static, unbalanced g ,
and cost-sensitive data

 The UCI datasets are small 
and not highly unbalanced

 Real world data are large 
(10^5 features) but only < 
1% f th  f l l  (+’ )

pressure blood test essay
? ? ?1% of the useful classes (+’ve)

 There is much information 
on costs and benefits  but no 

temperature cardiogram
39oc

?

?
on costs and benefits, but no 
overall model of profit and 
loss • Each test incurs a cost

 Data may evolve with a bias 
introduced by sampling

• Data extremely unbalanced
• Data change with time

 Some papers can be found here

http://www.jaist.ac.jp/~bao/K417-2008p j jp



Để máy hiểu được nghĩa các văn bản?

 Tìm tài liệu trên Google liên quan 
3 hủ đề “th hẩ ” “ ắ

y ợ g

Latent semantic analysis
3 chủ đề “thực phẩm”, “mắm 
tôm”, “dịch bệnh”.

 Google cho ra rất nhiều tài liệu
C

documents

w
or

ds

U

dims

w
or

ds

D
dims

di
m

s

V
documents

di
m

s

 Google cho ra rất nhiều tài liệu, 
với precision và recall thấp.

 Làm sao máy tính hiểu được nội D1 D2 D3 D4 D5 D6 Q1

dung văn bản để tìm kiếm cho 
hiệu quả?

 Thông qua chủ đề của văn bản

rock 2 1 0 2 0 1 1

granite 1 0 1 0 0 0 0

marble 1 2 0 0 0 0 1

music 0 0 0 1 2 0 0 Thông qua chủ đề của văn bản
 Latent semantic analysis 

(Deerwester et al., 1990;              

song 0 0 0 1 0 2 0

band 0 0 0 0 1 0 0

( , ;
Hofmann, 1999): Biểu diễn văn 
bản trong một không gian Euclid,
mỗi chiều là một tổ hợp tuyến

D1 D2 D3 D4 D5 D6 Q1

dim1 -0.888 -0.759 -0.615 -0.961 -0.388 -0.851 -0.845mỗi chiều là một tổ hợp tuyến 
tính các từ (giống PCA). dim2 0.460 0.652 0.789 -0.276 -0.922 -0.525 0.534

Topic modeling: key ideas

documents topics

Topic modeling

p g y

 Topic modeling key idea 
(LDA Blei JMLR 2004)

C

documents

w
or

ds 

topics

w
or

ds


documents

op
ic

s

(LDA, Blei, JMLR 2004)
 mỗi văn bản là một mixture 

của các chủ đề

Normalized co-
occurrence matrix

to

 mỗi chủ đề là một phân bố 
xác suất trên các từ.

 Thí dụụ
 “thực phẩm” = {an toàn, rau, 

thịt, cá, không ngộ độc, 
không đau bụng …}

ắ
Dirichlet
parameter

Per-word
topic assignment

Topic
hyperparameter

Latent Dirichlet Allocation (LDA)

 “mắm tôm” = {tôm, mặn, đậu 
phụ, thịt chó, lòng lợn, …}

 “dịch bệnh” = {nhiều người, 
cấp cứu bệnh viện thuốc

parameter

Per-document
topic proportions

p g

Observed   
word

Per-topic
word proportions

yp p

cấp cứu, bệnh viện, thuốc, 
vacine, mùa hè, … } 

 D1= {thực phẩm 0.6, mắm 
tôm 0.35, dịch bệnh 0.8} Zd n Wd Nd t , ị ệ } Zd,n Wd,n Nd M

d
T

t 

Latent Dirichlet allocation (LDA) model
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Example of topics learned

 From 16000 

p p

From 16000 
documents 
of AP corpus 
 100 t i   100-topic 
LDA model.

 Each color 
codes a 
different different 
factor from 
which the 
word is 
putatively 
generated generated 



Dirichlet-Lognormal (DLN) topic modelg p







z w

M
 N

d



Tz w

M
 N

d




T


)(~|  Dirichlet

Model descrption:

M th d DLN LDA SVM

Spam classification
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(Than Quang Khoat, Ho Tu Bao, 2010)

Traditional ML vs. TL (P. Langley 06)

Traditional ML in 
multiple domains

Transfer of learning
across domains
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Humans can learn in many domains. Humans can also transfer from one 
domain to other domains.

Traditional ML vs. TL
Learning Process of 
Traditional ML

Learning Process of 
Transfer LearningTraditional ML Transfer Learning

training items training items

Learning System Learning System Learning System

Learning SystemKnowledge

Notation

Domain:Domain:
It consists of two components: A feature space       ,  a marginal distribution  

In general,  if two domains are different, then they may have different feature spaces 
or different marginal distributions.

Task: 
Given a specific domain and label space       ,  for each      in the domain, to 
predict its corresponding label   

In general,  if two tasks are different, then they may have different label spaces or g , , y y p
different conditional distributions



Notation

For simplicity, we only consider at most two domains and two tasks.

Source domain:Source domain: 

Task in the source domain:

Target domain:

Task in the target domain


