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1. 9 challenges in ML (Caruana & Joachims)

2. 10 challenging problems in DM (Yang & Wu)

What is machine learning?

The goal of machine learning is to build computer systems that
can adapt and learn from their experience (Tom Dietterich).

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measure by P, improves with
experience (Tom Mitchell book, p. 2).

ML problems can be formulated as

o Given: (Xla YI)a (X27 y2)7 tee (Xm YH)
- X, is description of an object, phenomenon, etc.

-y, is some property of x,, if not available learning is unsupervised

o Find: a function f(x) that f(x)) =y,

Finding hypothesis f in a huge hypothesis space F by narrowing the search with constraints (bias)

Overview of ML challenges

Generative vs. discriminative learning
Learning from non-vectorial data
Beyond classification and regression
Distributed data mining

Machine learning bottlenecks
Intelligible models

Combining learning methods
Unsupervised learning comes of age
More informed information access

1. Generative vs. discriminative methods

Training classifiers involves estimating f: X 2 Y, or P(Y | X).
Examples: P(apple | red A round), P(noun | “c4”)

Generative classifiers

o Assume some functional
form for P(X|Y), P(Y)

o Estimate parameters of
P(X|Y), P(Y) directly from
training data, and use Bayes
rule to calculate P(Y | X = x;)

o HMM, Markov random
fields, Bayesian networks,
Gaussians, Naive Bayes, etc.

(ca: fish, to bet)

Discriminative classifiers

o Assume some functional form
for P(Y | X)

o Estimate parameters of P(Y | X)
directly from training data

a SVM, logistic regression,
traditional neural networks,
nearest neighbors, boosting,
MEMM, conditional random
fields, etc.




1. Generative vs. discriminative methods

Training classifiers involves estimating f: X 2 Y, or P(Y | X).
Examples: P(apple | red A round), P(noun | “ca”)

Generative classifiers Discriminative classifiers
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o HMM, Markov random
fields, Bayesian networks, P(apple | red A round) = F(red A round | apple)P(apple)
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(cé: fish, to bet)

Generative vs. discriminative methods

Generative approach Discriminative approach

Try to build models for the Try to learn to minimize an utility
underlying patterns function (e.g. classification error)

Can be learned, adapted, but not to model, represent, or

and generalized with small “understand” the pattern explicitly

data. (detect 99.99% faces in real images
and do not “know” that a face has
two eyes).

Often need large training data, say
100,000 labeled examples, and
can hardly be generalized.

Generative vs. discriminative learning

Objective: determine which is better for what, and why
Current:

o Discriminative learning (ANN, DT, KNN, SVM) typically more
accurate

Better with larger data
Faster to train
o Generative learning (graphical models, HMM) typically more flexible
More complex problems
More flexible predictions
Key Challenges:
o Vapnik: “When solving a problem, don'’t first solve a harder problem”
o Making generative methods computationally more feasible
o When to prefer discriminative vs. generative

2. Kernel methods

Objective: learning from non-vectorial input data
Current:

o Most learning algorithms work on flat, fixed length feature
vectors

o Each new data type requires a new learning algorithm

o Difficult to handle strings, gene/protein sequences, natural
language parse trees, graph structures, pictures, plots, ...

Key Challenges:
o One data-interface for multiple learning methods

o One learning method for multiple data types

Research already in progress




Kernel methods: the basic ideas

Input space X Feature space F

Xy X inverse map ¢’
]
[¢]
° d(x)
[e] e o

Xn-1 Xn

N\ | kxx) = 006)00g) | 4
N <

kernel function k: %% > ® kernel-based algorithm on K
(computation done on kernel matrix)

P X=R>*>H="
(XI’XZ)'_)(XISXZSX12+X22)

Kernel methods: math background
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kernel function k: 9x =@, ¢ Gram matrix Ky,= {k(x;,x)F3 kernel-based algorithm on K

Linear algebra, probability/statistics, functional analysis, optimization

Mercer theorem: Any positive definite function can be written as an
inner product in some feature space.

Kernel trick: Using kernel matrix instead of inner product in the

feature space. Every minimizer of min{C(f,{x.y,})+ Q(|f],) admits

Representer theorem: arepresentation of the form f(.) = ia‘K(., X;)

i=1

3. Beyond classification and regression

Objective: learning to predict complex objects
Current:
o Most machine learning focuses on classification and regression
o Discriminative methods often outperform generative methods
o Generative methods used for learning complex objects (e.g. language
parsing, protein sequence alignment, information extraction)
Key Challenges:

o Extend discriminative methods (ANN, DT, KNN, SVM, ...) to more
general settings

o Examples: ranking functions (e.g. Google top-ten, ROC), natural
language parsing, finite-state models

o Find ways to directly optimize desired performance criteria (e.g.
ranking performance vs. error rate)

What is structured prediction? (Daume)

Structured prediction is a fundamental machine learning task
involving classification or regression in which the output
variables are mutually dependent or constrained.

Such dependencies and constraints reflect sequential, spatial or
combinatorial structure in the problem domain, and capturing
these interactions is often as important for the purposes of
prediction as capturing input-output dependencies.

Structured prediction (SP) — the machine learning task of
generating outputs with complex internal structure .




What is structured prediction? (Lafferty)

Text, sound, event logs, biological, handwriting, gene networks,
linked data structures like the Web can be viewed as graphs
connecting basic data elements-.

Important tasks involving structured data require the
computation of a labeling for the nodes or the edges of the
underlying graph. E.g., POS tagging of natural language text
can be seen as the labeling of nodes representing the successive
words with linguistic labels.

A good labeling will depend not just on individual nodes but
also the contents and labels of nearby nodes, that is, the
preceding and following words--~thus, the labels are not

independent.

Handwriting recognition
X J
Il = broce

Sequential structure

Structured prediction

Structured Learning / Structured Prediction

h: X —>Y
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(a) Unstructured Model (b) Linear-Structured Model

Labeling sequence data problem

X is a random variable over data sequences

Y is a random variable over label sequences whose labels are assumed
to range over a finite label alphabet A

Problem: Learn how to give labels from a closed set Y to a data
sequence X

Xy X2 X3
X: ‘Thinking’—{ is H being ‘
Y: | noun 1 verb | noun |

Y1 Y, Y3

= POS tagging, phrase types, etc. (NLP),

= Named entity recognition (IE)

= Modeling protein sequences (CB)

= Image segmentation, object recognition (PR)
= efc.

X | KARIIRYFYNAKAGLC QTE‘CRAKRNINFKSAED
Y nnnnhnnhnTTEEEnhnnnhhnTEE Ennnnnn




4. Distributed learning

Objective: DM/ML with distributed data

Current:
o Most ML algorithms assume random access to all data

o Often data comes from decentralized sources (e. . sensor
networks, multiple organizations, learning across firewalls,
different security systems)

o Many projects infeasible (e.g. organization not allowed to share
data)
Key Challenges:
o Develop methods for distributing data while preserving privacy

o Develop methods for distributed learning without distributing the
data

5. Full auto: ML for the masses

Objective: make ML easier to apply to real problems
Current:

a ML applications require detailed knowledge about the algs

a Preparing/Preprocessing takes at least 75% of the effort
Key Challenges:

o Automatic selection of machine learning method

a Tools for preprocessing the data
Reformatting, Sampling, Filling in missing values, Outlier detection

a Robust performance estimation and model selection
a “Data Scoup”

6. Interpretable models

Objective: make learning results more understandable

Current:
o Methods often achieve good prediction accuracy
o The prediction rule appears complex & is difficult to verify
o Lack of trust in the rule
o Lack of insight

Key Challenges:
o Machine learning methods that are understandable &
generate accurate rules
o Methods for generating explanations
o Model verification for user acceptance

7. Ensemble methods

Objective: combining learning methods automatically

Current:
o We do not have a single DM/ML method that “does it all”

o Results indicate that combining models results in large
improvements in performance

a Focus on boosting and bagging

Key Challenges:
o Develop methods that combine the best of different learning algs
o Searching for good combinations might be more efficient than
designing one “global” learning algorithm
o Theoretical explanation for why and when ensemble methods
help




Selective ensemble Lombp Ao g ok

Many Could be Better Than All: When a number of learners
are available, ... ..., ensembling many of the available learners
may be better than ensembling all of them

[Z.-H. Zhou et al., ITCAT'01 & AIJ02]

The learner k& to be excluded from the ensemble satisfies:
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8. Unsupervised learning

Objective: improve state-of-the-art in unsupervised learning
Current:
0 Research focus in 90 was supervised learning

o Much progress on supervised learning methods like neural
networks, support vector machines, boosting, etc.

o Unsupervised learning needs to “catch up”
Key Challenges:
o More robust and stable methods for clustering

o Include user feedback into unsupervised learning (e.g. clustering
with constraints, semi-supervised learning, transduction)

o Automatic distance metric learning
o Clustering as an interactive data analysis process

9. Information access

Objective: more informed information access
Current:
o Bag-of-words
o Retrieval functions exploit document structure and link structure
o Information retrieval is a process without memory
Key Challenges:
o Develop methods for exploiting usage data
o Learn from the query history of a user / user group
o Preserving privacy while mining access patterns
o Exploiting common access patterns and finding “groups” of users
o Web Expert: agent that learns the web (beyond Google)
]

Topic modelling

What is data mining?

“Data-driven discovery of models and patterns

from massive observational data sets”

Statistics, Languages, Data
Inference Representations Management

Applications




Overview of DM challenges (ICDM’05)

. Developing a Unifying Theory of Data Mining

2. Scaling Up for High Dimensional Data/High Speed Streams
5. Mining Sequence Data and Time Series Data

4. Mining Complex Knowledge from Complex Data

5. Data Mining in a Network Setting

6. Distributed Data Mining and Mining Multi-agent Data

7. Data Mining for Biological and Environmental Problems

&.  Data-Mining-Process Related Problems

9. Security, Privacy and Data Integrity

10. Dealing with Non-static, Unbalanced and Cost-sensitive Data

‘ 1. Developing a unitying theory of DM

= The current state of the art of

data-mining research is too
“ad-hoc”

o techniques are designed for
individual problems

o no unifying theory
= Needs unifying research
o Exploration vs explanation
» Long standing theoretical issues

o How to avoid spurious
correlations?

= Deep research

o Knowledge discovery on
hidden causes?

o Similar to discovery of
Newton’s Law?

Example: VC dimension. In statistical
learning theory, or sometimes
computational learning theory, the VC
dimension (for Vapnik-Chervonenkis
dimension) is a measure of the capacity
of a statistical classification algorithm,
defined as the cardinality of the largest
set of points that the algorithm can
shatter.

3 points shattered 4 points impossible

VC dimension of perceptron is 3.

2. Scaling up for high dimensional data
and high speed streams

» Scaling up is needed

A Stream Application Example

o ultra-high dimensional
classification problems (millions
or billions of features, e.g., bio
data)

o Ultra~high speed data streams
= Streams
a continuous, online process

o e.g. how to monitor network
packets for intruders?

o concept drift and environment
drift?

o RFID network and sensor
network data

Excerpt from Jian Pei’s Tutorial
http://www.cs.sfu.ca/~jpei/

3. Sequential and time series data

= How to efficiently and
accurately cluster, classify
and predict the trends?

= Time series data used for
predictions are
contaminated by noise

o How to do accurate short-
term and long-term
predictions?

o Signal processing techniques
introduce lags in the filtered
data, which reduces accuracy

o Key in source selection,
domain knowledge in rules,
and optimization methods

signal Strength (dBm)

RIS | | | ¥ AP
o AP2
& ap3|]
% AP4

Real time series data obtained from
Wireless sensors in Hong Kong UST
CS department hallway




‘ 4. Mining complex knowledge from complex
data (complexly structured data)

= Mining graphs

Data that are not i.i.d. (independent and identically distributed)
o many objects are not independent of each other, and are not of a single type.
o mine the rich structure of relations among objects,
o E.g.:interlinked Web pages, social networks, metabolic networks in the cell

Integration of data mining and knowledge inference

o The biggest gap: unable to relate the results of mining to the real-world
decisions they affect ~ all they can do is hand the results back to the user.

More research on interestingness of knowledge

T

Wpiey - )
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5. Data mining in a network setting

= Community and Social Networks
o Linked data between emails,
Web pages, blogs, citations,
sequences and people
o Static and dynamic structural
behavior
= Mining in and for Computer
Networks
o detect anomalies (e.g., sudden
traffic spikes due to a DoS
(Denial of Service) attacks

o Need to handle 10Gig

Picture from Matthew Pirretti’s slides,penn state

An Example of packet streams (data courtesy of
NCSA, UIUC)

hug 00 00 00 06 20 hug 0 00 00,06

LILIEAN B
0 hug 0100 0006 20 hu 03 00,00, 06 3 158 301

. it ] ]
Ethernet llnks (a) deteCt (b) 0 Mgl 03 00:00:0¢ 10 hw: 03 00:00:06  wip ] 10 0 I
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‘ 6. Distributed data mining and mining
multi-agent data

= Need to correlate the data
seen at the various probes
(such as in a sensor network)

» Games

Player 1:miner

o Action: H
» Adversary data mining;:

deliberately manipulate the
data to sabotage them (e.g.,
make them produce false
negatives)

Player 2
T

-1,1) a,-1y  @,-1y) L1
= Game theory may be needed

for help

Outcome

7. Data mining for biological and
environmental problems

DBGET Database Links

= New problems raise new — =
questions /) .

. Relien Lol ] m «arhliank

= Large scale problems especially so | s — = |
0 Biological data mining, such as = W =
HIV vaccine design _ ] ‘
3000

o DNA, chemical properties, 3D
structures, and functional
properties = need to be fused

Metabolomics

metabolite

Proteomics
o Environmental data mining

o Mining for solving the energy
crisis




8. Data-mining-process related problems

How to automate mining
process?
o the composition of data
mining operations

a step in the KDD Putting the results
process consisting of in practical use
methods that produce
useful patterns or
models from the data

Interpret and evaluate
discovered knowledge

o Data cleaning, with
logging capabilities Maybe 10
and cost in

Data mining
Extract Patterns/Models

Collect and preprocess data

Understand the domain
and define problems

o Visualization and mining
automation

Need a methodology: help
users avoid many data mining
mistakes

KDD is inherently
interactive and

( . .
iterative

(In many cases, viewed KDD as data mining)
o What is a canonical set of
data mining operations

9. Security, privacy and data integrity

How to ensure the
users privacy while Secure Multi-Party Computation
their data are being (SMC) Methods

mined? | s0j70k|.. | | s0j40¢] |
l ..

Perturbation Methods

age

! I
raﬁggm [ Randomizer ] [ Randomizer J
number to l l l l

Ao | esi20k].. | [ 25160k
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becom
es 65
(30+35

How to do data
mining for
protection of security
and privacy?

| ]

Reconstruct 1 Reconstruct

Distribution Distribution
of Age

of Salary

Classification
[ Algorithm hloces ]

/|

Knowledge integrity
assessment

10. Dealing with non-static, unbalanced
and cost-sensitive data

The UCI datasets are small

and not highly unbalanced v\,\) zi

Real world data are large Md g

(1015 features) but only < pregsure blood test essa

1% of the useful classes (+’ve) - —
There is much information e re e

on costs and benefits, but no
overall model of profit and

loss » Each test incurs a cost

' ‘ 777+ Data extremely unbalanced
Data may evolve with a bias * Data change with time

introduced by sampling

Some papers can be found here
http://www jaist.ac.jp/~bao/K417-2008




Dé may hi€u dugc nghia cac van ban?

m Tim tai liéu trén Google lién quan Latent semantic analysis

3 chu d‘é “thl.fC ph§m”, “mém documents dims
t(’\)m”, “dich bénh”. 2 3 ,,dims_ documents
S 5|C =%lu | |§v_]
m Google cho ra rat nhiéu tai liéu,

V@i precision va recall thap.

m Lam sao may tinh hi€u dugc noi DI | D2 | D3 | D4 | D5 | D6 | Qtf
dung van ban dé tim kiém cho rock 2 [ 1 [ofz2z]o]1]n
‘A 20 granite 1 0 1 0 0 0 0
hleu quar marble 1 2 0 0 0 0 1
m Thoéng qua chu dé cda van ban music o jojojrjzj0}0
song 0 0 0 1 0 2 0
m Latent semantic analysis Band D0 0O 10 [
(Deerwester et al., 1990; @
Hofmann, 1999): Biéu dién van
ban trong mét khéng gian Euclid, o mE | be || B | 05 || B |
m6| Chi‘éu Ié mét t6 hdp tuyé’n dim1 -0.888 | -0.759 [ -0.615 [ -0.961 -0.388 [ -0.851 -0.845
. . dim2 | 0.460 0.652 0.789 -0.276 | -0.922 | -0.525 | 0.534

tinh cac tir (giong PCA).

Topic modeling: key ideas

Topic modeling

Topic modeling key idea

(LDA, Blei, JMLR 2004) documents topics
o mbi van ban la mot mixture N " documents
clia cac chi dé 5| C =350 |&
x . y * g s
o mbi chd dé 1a mot phan b

Xac suét trén cac tu. Normalized co-

, occurrence matrix
Thi du
o “thuwc phdm” = {an toan, rau,

thit, ca, khong ngd doc, Latent Dirichlet Allocation (LDA)

khéng dau bung ...} Dirichlet Per-word Topic
e A . . . parameter topic assignment hyperparameter
o “mam tdom” = {tébm, man, dau
phu, thit Ché, |(~)ng Idn, } PertdocumenF Observed Per-topic )
N . o . topic proportions word word proportions
o “dich bénh” = {nhiéu ngudi, l l

cép cltu, bénh vién, thudc,
vacine, mua he, ...}

o D1= {thuc ph&m 0.6, m&m Q”O_%‘ QO

tém 0.35, dich bénh 0.8} a 04 Zgn Wy, N, oy B

Latent Dirichlet allocation (LDA) model

F(Zf-l Q) o a, -1 p
pOla) = =gt g OO0 e

Hrzlr(ai) d 7 W _Q TO
Dirichlet prior on the per-document topic distributions I\;I

p(@.z,w|a, f) = pé|e)] | p(z,0) p(W,|2,. B)

Joint distribution of topic mixture 6, a set of N topic z, a set of N words w

p(w|er. )= [ p(4 a>(nz p(z,| 0) p(W| zn,m]dke

n=l 1z,
Marginal distribution of a document by integrating over 6 and summing over z

M Ny

k

p(D|e. ) =T]] p(%a){HZ P(Zin|62) p(wdnzdn,ﬂ)Jd 2
d=1 n=1 z4,

Probability of collection by product of marginal probabilities of single documents

Example of topics learned

“Arts” “Children” “Education”
= From 16000 NEW MILLION CHILDREN  SCHOOL
FILM TAX WOMEN STUDENTS
documents SHOW PROGRAM PEOPLE SCHOOLS
f AP MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
Y cor p us PLAY FEDERAL FAMILIES HIGH
-1 OO-tOpi C MUSICAT YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
LDA model ACTOR NEW SAYS BENNETT
* FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMFPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
» Each color ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HATTI
codes a
diffe rent The William Randolph Hearst will give to Lincoln Center,
Metropalitan Opera Co., New York Philharmonic and Juilliard School.  “Omr
faCtOf' from felt that we had a real opportunity to make a mark om the future of the performing
h . h h arts with these an act every bit as important as our traditional areas of
wnic t e in health, medical education and the social Hearst
d : Randolph A. Hearst said Monday in the Lincaln Center’s
worda i1s share will be for its new which will yonug artists and
: new The Metropolitan Opera Co. and New York Philharmonic will
pUtatlve ly each. The Juilliard School, where music and the performing arts are
tanght, will get The Hearst a leading supporter of the Lincaln
generated Center Consolidated Corporate will make its nsual donation,

toa.




‘ Dirichlet-Lognormal (DLN) topic model

O p
ol 0 z WN s ol 0 z WN
4 M 4 M

Model descrption: L
Spam classification

O0la ~ Dirichlet(a)

B 1,2~ Lognormal(,Y)
z|60 ~ Multinomial(8)

w| g ~ Multinormial(f(£))

Method  DLN LDA SVM

Accuracy 0.5937 0.4984 0.4945

I N Predicting crime
Q)T XX,

where logx = (logX,,...,logx, )"

exp{— % (logx— )" ™' (logx — y)}
DLN LDA SVM

0.2442 0.1035 0.2261

(Than Quang Khoat, Ho Tu Bao, 2010)

' Traditional ML vs. TL (. Langley 06)

Traditional ML in
multiple domains

D=

Humans can learn in many domains.

Transfer of learning
across domains

test items

training items
test items
training items

Humans can also transfer from one

domain to-other domains

\ Traditional ML vs. TL

Learning Process of
Transfer Learning

Learning Process of
Traditional ML

training items

Learning System

Learning System

Learning System

<4 (O
Qo

Notation

Domain:
It consists of two components: A feature space X' , a marginal distribution

P(X), where X = {z;, 19, ....0,} € X
In general, if two domains are different, then they may have different feature spaces
or different marginal distributions.

Task:

Given a specific domain and label space Y, for each ; in the domain, to
redict its corresponding label .

P P g y;, Where y; € Y

In general, if two tasks are different, then they may have different label spaces or

different conditional distributions

P(Y|X), where Y = {y;, ...y, } and y, € Y




Notation

For simplicity, we only consider at most two domains and two tasks.

Source domain:
P(Xs), where Xs = {xs,, 75, ....75,, } € Xs
Task in the source domain:
P(Ys|Xs), where Yo = {vs,, us,. .... :Usns}' and ys, € Vs
Target domain:
P(Xr), where X7 = {aq,. 21y, .27, } € X7
Task in the target domain

P(Yr|Xr), where Yr = {ur,, yr,. ....yr, } and yr, € Vr

np




